
deform Documentation
Release 0.9.7

Pylons Developers

May 26, 2013

CONTENTS

i

ii

deform Documentation, Release 0.9.7

deform is a Python HTML form generation library. It runs under Python 2.6, 2.7, 3.2 and 3.3.

The design of deform is heavily influenced by the formish form generation library. Some might even say it’s a
shameless rip-off; this would not be completely inaccurate. It differs from formish mostly in ways that make the
implementation (arguably) simpler and smaller.

deform uses Colander as a schema library, Peppercorn as a form control deserialization library, and Chameleon to
perform HTML templating.

deform depends only on Peppercorn, Colander, Chameleon and an internationalization library named translation-
string, so it may be used in most web frameworks (or antiframeworks) as a result.

Alternate templating languages may be used, as long as all templates are translated from the native Chameleon tem-
plates to your templating system of choice and a suitable renderer is supplied to deform.

CONTENTS 1

http://ish.io/projects/show/formish

deform Documentation, Release 0.9.7

2 CONTENTS

CHAPTER

ONE

TOPICS

1.1 Basic Usage

In this chapter, we’ll walk through basic usage of Deform to render a form, and capture and validate input.

The steps a developer must take to cause a form to be renderered and subsequently be ready to accept form submission
input are:

• Define a schema

• Create a form object.

• Assign non-default widgets to fields in the form (optional).

• Render the form.

Once the form is rendered, a user will interact with the form in his browser, and some point, he will submit it. When
the user submits the form, the data provided by the user will either validate properly, or the form will need to be
rerendered with error markers which help to inform the user of which parts need to be filled in “properly” (as defined
by the schema). We allow the user to continue filling in the form, submitting, and revalidating indefinitely.

1.1.1 Defining A Schema

The first step to using Deform is to create a schema which represents the data structure you wish to be captured via a
form rendering.

For example, let’s imagine you want to create a form based roughly on a data structure you’ll obtain by reading data
from a relational database. An example of such a data structure might look something like this:

1 [
2 {
3 ’name’:’keith’,
4 ’age’:20,
5 },
6 {
7 ’name’:’fred’,
8 ’age’:23,
9 },

10]

In other words, the database query we make returns a sequence of people; each person is represented by some data.
We need to edit this data. There won’t be many people in this list, so we don’t need any sort of paging or batching to
make our way through the list; we can display it all on one form page.

3

deform Documentation, Release 0.9.7

Deform designates a structure akin to the example above as an appstruct. The term “appstruct” is shorthand for
“application structure”, because it’s the kind of high-level structure that an application usually cares about: the data
present in an appstruct is useful directly to an application itself.

Note: An appstruct differs from other structures that Deform uses (such as pstruct and cstruct structures): pstructs
and cstructs are typically only useful during intermediate parts of the rendering process.

Usually, given some appstruct, you can divine a schema that would allow you to edit the data related to the appstruct.
Let’s define a schema which will attempt to serialize this particular appstruct to a form. Our application has these
requirements of the resulting form:

• It must be possible to add and remove a person.

• It must be possible to change any person’s name or age after they’ve been added.

Here’s a schema that will help us meet those requirements:

1 import colander
2

3 class Person(colander.MappingSchema):
4 name = colander.SchemaNode(colander.String())
5 age = colander.SchemaNode(colander.Integer(),
6 validator=colander.Range(0, 200))
7

8 class People(colander.SequenceSchema):
9 person = Person()

10

11 class Schema(colander.MappingSchema):
12 people = People()
13

14 schema = Schema()

The schemas used by Deform come from a package named Colander. The canonical documentation for Colander
exists at http://docs.pylonsproject.org/projects/colander/dev/ . To compose complex schemas, you’ll need to read it to
get comfy with the documentation of the default Colander data types. But for now, we can play it by ear.

For ease of reading, we’ve actually defined three schemas above, but we coalesce them all into a single schema
instance as schema in the last step. A People schema is a collection of Person schema nodes. As the result of
our definitions, a Person represents:

• A name, which must be a string.

• An age, which must be deserializable to an integer; after deserialization happens, a validator ensures that the
integer is between 0 and 200 inclusive.

Schema Node Objects

Note: This section repeats and contextualizes the Colander documentation about schema nodes in order to prevent
you from needing to switch away from this page to another while trying to learn about forms. But you can also get
much the same information at http://docs.pylonsproject.org/projects/colander/dev/

A schema is composed of one or more schema node objects, each typically of the class colander.SchemaNode,
usually in a nested arrangement. Each schema node object has a required type, an optional preparer for adjusting data
after deserialization, an optional validator for deserialized prepared data, an optional default, an optional missing, an
optional title, an optinal css_class, an optional description, and a slightly less optional name. It also accepts arbitrary
keyword arguments, which are attached directly as attributes to the node instance.

4 Chapter 1. Topics

http://docs.pylonsproject.org/projects/colander/dev/
http://docs.pylonsproject.org/projects/colander/dev/
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode

deform Documentation, Release 0.9.7

The type of a schema node indicates its data type (such as colander.Int or colander.String).

The preparer of a schema node is called after deserialization but before validation; it prepares a deserialized value for
validation. Examples would be to prepend schemes that may be missing on url values or to filter html provided by a
rich text editor. A preparer is not called during serialization, only during deserialization.

The validator of a schema node is called after deserialization and preparation ; it makes sure the value matches a
constraint. An example of such a validator is provided in the schema above: validator=colander.Range(0,
200). A validator is not called after schema node serialization, only after node deserialization.

The default of a schema node indicates the value to be serialized if a value for the schema node is not found in the
input data during serialization. It should be the deserialized representation.

The missing of a schema node indicates the value to be deserialized if a value for the schema node is not found in
the input data during deserialization. It should be the deserialized representation. If a schema node does not have a
missing value, a colander.Invalid exception will be raised if the data structure being deserialized does not
contain a matching value.

The name of a schema node is used to relate schema nodes to each other. It is also used as the title if a title is not
provided.

The title of a schema node is metadata about a schema node. It shows up in the legend above the form field(s) related
to the schema node. By default, it is a capitalization of the name.

The css_class of a schema node is metadata about a schema node. It shows up as a CSS class on the fieldset, which is
rendered from the schema node.

The description of a schema node is metadata about a schema node. It shows up as a tooltip when someone hovers
over the form control(s) related to a field. By default, it is empty.

The name of a schema node that is introduced as a class-level attribute of a colander.MappingSchema,
colander.TupleSchema or a colander.SequenceSchema is its class attribute name. For example:

1 import colander
2

3 class Phone(colander.MappingSchema):
4 location = colander.SchemaNode(colander.String(),
5 validator=colander.OneOf([’home’,’work’]))
6 number = colander.SchemaNode(colander.String())

The name of the schema node defined via location = colander.SchemaNode(..) within the schema above
is location. The title of the same schema node is Location.

Schema Objects

In the examples above, if you’ve been paying attention, you’ll have noticed that we’re defining classes which
subclass from colander.MappingSchema, and colander.SequenceSchema. It’s turtles all the way
down: the result of creating an instance of any of colander.MappingSchema, colander.TupleSchema
or colander.SequenceSchema object is also a colander.SchemaNode object.

Instantiating a colander.MappingSchema creates a schema node which has a type value of
colander.Mapping.

Instantiating a colander.TupleSchema creates a schema node which has a type value of colander.Tuple.

Instantiating a colander.SequenceSchema creates a schema node which has a type value of
colander.Sequence.

1.1. Basic Usage 5

http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.String
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.TupleSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SequenceSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SequenceSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.TupleSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SequenceSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Mapping
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.TupleSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Tuple
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SequenceSchema
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Sequence

deform Documentation, Release 0.9.7

Creating Schemas Without Using a Class Statement (Imperatively)

See http://docs.pylonsproject.org/projects/colander/dev/basics.html#defining-a-schema-imperatively for information
about how to create schemas without using a class statement.

Creating a schema with or without class statements is purely a style decision; the outcome of creating a schema
without class statements is the same as creating one with class statements.

1.1.2 Rendering a Form

Earlier we defined a schema:

1 import colander
2

3 class Person(colander.MappingSchema):
4 name = colander.SchemaNode(colander.String())
5 age = colander.SchemaNode(colander.Integer(),
6 validator=colander.Range(0, 200))
7

8 class People(colander.SequenceSchema):
9 person = Person()

10

11 class Schema(colander.MappingSchema):
12 people = People()
13

14 schema = Schema()

Let’s now use this schema to create, render and validate a form.

Creating a Form Object

To create a form object, we do this:

1 from deform import Form
2 myform = Form(schema, buttons=(’submit’,))

We used the schema object (an instance of colander.MappingSchema) we created in the previous section as
the first positional parameter to the deform.Form class; we passed the value (’submit’,) as the value of the
buttons keyword argument. This will cause a single submit input element labeled Submit to be injected at the
bottom of the form rendering. We chose to pass in the button names as a sequence of strings, but we could have also
passed a sequence of instances of the deform.Button class. Either is permissible.

Note that the first positional argument to deform.Form must be a schema node representing a mapping object (a
structure which maps a key to a value). We satisfied this constraint above by passing our schema object, which
we obtained via the colander.MappingSchema constructor, as the schema argument to the deform.Form
constructor

Although different kinds of schema nodes can be present in a schema used by a Deform deform.Form instance, a
form instance cannot deal with a schema node representing a sequence, a tuple schema, a string, an integer, etc. as the
value of its schema parameter; only a schema node representing a mapping is permissible. This typically means that
the object passed as the schema argument to a deform.Form constructor must be obtained as the result of using
the colander.MappingSchema constructor (or the equivalent imperative spelling).

6 Chapter 1. Topics

http://docs.pylonsproject.org/projects/colander/dev/basics.html#defining-a-schema-imperatively

deform Documentation, Release 0.9.7

Rendering the Form

Once we’ve created a Form object, we can render it without issue by calling the deform.Field.render()
method: the deform.Form class is a subclass of the deform.Field class, so this method is available to a
deform.Form instance.

If we wanted to render an “add” form (a form without initial data), we’d just omit the appstruct while calling
deform.Field.render().

form = myform.render()

If we have some existing data already that we’d like to edit using the form (the form is an “edit form” as opposed to
an “add form”). That data might look like this:

1 appstruct = [
2 {
3 ’name’:’keith’,
4 ’age’:20,
5 },
6 {
7 ’name’:’fred’,
8 ’age’:23,
9 },

10]

To inject it into the serialized form as the data to be edited, we’d pass it in to the deform.Field.render()
method to get a form rendering:

form = myform.render(appstruct)

If, finally, instead we wanted to render a “read-only” variant of an edit form using the same appstruct, we’d pass the
readonly flag as True to the deform.Field.render() method.

form = myform.render(appstruct, readonly=True)

This would cause a page to be rendered in a crude form without any form controls, so the user it’s presented to cannot
edit it.

Once any of the above statements runs, the form variable is now a Unicode object containing an HTML rendering of
the edit form, useful for serving out to a browser. The root tag of the rendering will be the <form> tag representing
this form (or at least a <div> tag that contains this form tag), so the application using it will need to wrap it in HTML
<html> and <body> tags as necessary. It will need to be inserted as “structure” without any HTML escaping.

Serving up the Rendered Form

We now have an HTML rendering of a form as the variable named form. But before we can serve it up successfully
to a browser user, we have to make sure that static resources used by Deform can be resolved properly. Some Deform
widgets (including at least one we’ve implied in our sample schema) require access to static resources such as images
via HTTP.

For these widgets to work properly, we’ll need to arrange that files in the directory named static within the
deform package can be resolved via a URL which lives at the same hostname and port number as the page
which serves up the form itself. For example, the URL /static/css/form.css should be willing to return
the form.css CSS file in the static/css directory in the deform package as text/css content and return
/static/scripts/deform.js as‘‘text/javascript‘‘ content. How you arrange to do this is dependent on your
web framework. It’s done in pyramid imperative configuration via:

1.1. Basic Usage 7

deform Documentation, Release 0.9.7

config = Configurator(...)
...
config.add_static_view(’static’, ’deform:static’)
...

Your web framework will use a different mechanism to offer up static files.

Some of the more important files in the set of JavaScript, CSS files, and images present in the static directory of
the deform package are the following:

static/scripts/jquery-1.4.2.min.js A local copy of the JQuery javascript library, used by widgets and
other JavaScript files.

static/scripts/deform.js A JavaScript library which should be loaded by any template which injects a
rendered Deform form.

static/css/form.css CSS related to form element renderings.

Each of these libraries should be included in the <head> tag of a page which renders a Deform form, e.g.:

1 <head>
2 <title>
3 Deform Demo Site
4 </title>
5 <!-- Meta Tags -->
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
7 <!-- CSS -->
8 <link rel="stylesheet" href="/static/css/form.css" type="text/css" />
9 <!-- JavaScript -->

10 <script type="text/javascript"
11 src="/static/scripts/jquery-1.4.2.min.js"></script>
12 <script type="text/javascript"
13 src="/static/scripts/deform.js"></script>
14 </head>

The deform.field.get_widget_resources() method can be used to tell you which static directory-
relative files are required by a particular form rendering, so that you can inject only the ones necessary into the page
rendering.

The JavaScript function deform.load() must be called by the HTML page (usually in a script tag near the end
of the page, ala <script..>deform.load()</script>) which renders a Deform form in order for widgets
which use JavaScript to do proper event and behavior binding. If this function is not called, built-in widgets which use
JavaScript will not function properly. For example, you might include this within the body of the rendered page near
its end:

1 <script type="text/javascript">
2 deform.load()
3 </script>

As above, the head should also contain a <meta> tag which names a utf-8 charset in a Content-Type http-equiv.
This is a sane setting for most systems.

1.1.3 Validating a Form Submission

Once the user seen the form and has chewed on its inputs a bit, he will eventually submit the form. When he submits
it, the logic you use to deal with the form validation must do a few things:

• It must detect that a submit button was clicked.

• It must obtain the list of form controls from the form POST data.

8 Chapter 1. Topics

deform Documentation, Release 0.9.7

• It must call the deform.Form.validate() method with the list of form controls.

• It must be willing to catch a deform.ValidationFailure exception and rerender the form if there were
validation errors.

For example, using the WebOb API for the above tasks, and the form object we created earlier, such a dance might
look like this:

1 if ’submit’ in request.POST: # detect that the submit button was clicked
2

3 controls = request.POST.items() # get the form controls
4

5 try:
6 appstruct = myform.validate(controls) # call validate
7 except ValidationFailure, e: # catch the exception
8 return {’form’:e.render()} # re-render the form with an exception
9

10 # the form submission succeeded, we have the data
11 return {’form’:None, ’appstruct’:appstruct}

The above set of statements is the sort of logic every web app that uses Deform must do. If the validation stage does
not fail, a variable named appstruct will exist with the data serialized from the form to be used in your application.
Otherwise the form will be rerendered.

Note that by default, when any form submit button is clicked, the form will send a post request to the same URL which
rendered the form. This can be changed by passing a different action to the deform.Form constructor.

1.1.4 Seeing it In Action

To see an “add form” in action that follows the schema in this chapter, visit
http://deformdemo.repoze.org/sequence_of_mappings/.

To see a “readonly edit form” in action that follows the schema in this chapter, visit
http://deformdemo.repoze.org/readonly_sequence_of_mappings/

The application at http://deformdemo.repoze.org is a pyramid application which demonstrates most of the features
of Deform, including most of the widget and data types available for use within an application that uses Deform.

1.2 Retail Form Rendering

In the previous chapter we demonstrated how to use Deform to render a complete form, including the input fields, the
buttons, and so forth. We used the deform.Field.render() method, and injected the resulting HTML snippet
into a larger HTML page in our application. That is an effective and quick way to put a form on a page, but sometimes
you need more fine-grained control over the way form HTML is rendered. For example, you may need form elements
to be placed on the page side-by-side or you might need the form’s styling to be radically different than the form
styling used by the default rendering of Deform forms. Often it’s easier to use Deform slightly differently, where you
do more work yourself to draw the form within a template, and only use Deform for some of its features. We refer to
this as “retail form rendering”.

Note: This feature is new as of Deform 0.9.6.

1.2.1 A Basic Example

Our schema and form object:

1.2. Retail Form Rendering 9

http://deformdemo.repoze.org/sequence_of_mappings/
http://deformdemo.repoze.org/readonly_sequence_of_mappings/
http://deformdemo.repoze.org

deform Documentation, Release 0.9.7

1 import colander
2

3 class Person(colander.MappingSchema):
4 name = colander.SchemaNode(colander.String())
5 age = colander.SchemaNode(colander.Integer(),
6 validator=colander.Range(0, 200))
7

8 schema = Person()
9 form = deform.Form(schema, resource_registry=resource_registry)

We feed the schema into a template as the form value. It doesn’t matter what kind of templating system you use to
do this, but this example will use ZPT. Below, the name form refers to the form we just created above:

<div class="row"
tal:repeat="field form">

<div class="span2">
${structure:field.title}
*

</div>
<div class="span2">

${structure:field.serialize()}
</div>
<ul tal:condition="field.error">

<li tal:repeat="error field.error.messages()">
${structure:error}

</div>

The above template iterates over the fields in the form, using the attributes of each field to draw the title.

You can use the __getitem__ method of a form to grab named form fields instead of iterating over all of its fields.
For example:

<div tal:define="field form[’name’]">
<div class="span2">

${structure:field.title}
*

</div>
<div class="span2">

${structure:field.serialize()}
</div>
<ul tal:condition="field.error">

<li tal:repeat="error field.error.messages()">
${structure:error}

</div>

You can use as little or as much of the Deform Field API to draw the widget as you like. The above examples use
the deform.Field.serialize() method, which is an easy way to let Deform draw the field HTML, but you
can draw it yourself instead if you like, and just rely on the field object for its validation errors (if any). Note that the
serialize method accepts arbitrary keyword arguments that will be passed as top-level arguments to the Deform
widget templates, so if you need to change how a particular widget is rendered without doing things completely by
hand, you may want to take a look at the existing widget template and see if your need has been anticipated.

In the POST handler for the form, just do things like we did in the last chapter, except if validation fails, just re-render
the template with the same form object.

10 Chapter 1. Topics

deform Documentation, Release 0.9.7

controls = request.POST.items() # get the form controls

try:
appstruct = form.validate(controls) # call validate

except ValidationFailure, e: # catch the exception
.. rerender the form .. its field’s .error attributes
will be set

It is also possible to pass an appstruct argument to the deform.Form constructor to create “edit forms”.
Form/field objects are initialized with this appstruct (recursively) when they’re created. This means that accessing
form.cstruct will return the current set of rendering values. This value is reset during validation, so after a
validation is done you can re-render the form to show validation errors.

Note that existing Deform widgets are all built using “retail mode” APIs, so if you need examples, you can look at
their templates.

Other methods that might be useful during retail form rendering are:

• deform.Field.__contains__()

• deform.Field.start_mapping()

• deform.Field.end_mapping()

• deform.Field.start_sequence()

• deform.Field.end_sequence()

• deform.Field.start_rename()

• deform.Field.end_rename()

• deform.Field.set_appstruct()

• deform.Field.set_pstruct()

• deform.Field.render_template()

• deform.Field.validate_pstruct() (and the subcontrol argument to
deform.Field.validate())

1.3 Common Needs

This chapter collects solutions for requirements that will often crop up once you start using Deform for real world
applications.

1.3.1 Changing the Default Widget Associated With a Field

Let’s take another look at our familiar schema:

1 import colander
2

3 class Person(colander.MappingSchema):
4 name = colander.SchemaNode(colander.String())
5 age = colander.SchemaNode(colander.Integer(),
6 validator=colander.Range(0, 200))
7

8 class People(colander.SequenceSchema):
9 person = Person()

1.3. Common Needs 11

deform Documentation, Release 0.9.7

10

11 class Schema(colander.MappingSchema):
12 people = People()
13

14 schema = Schema()

This schema renders as a sequence of mapping objects. Each mapping has two leaf nodes in it: a string and an
integer. If you play around with the demo at http://deformdemo.repoze.org/sequence_of_mappings/ you’ll notice that,
although we don’t actually specify a particular kind of widget for each of these fields, a sensible default widget is used.
This is true of each of the default types in Colander. Here is how they are mapped by default. In the following list, the
schema type which is the header uses the widget underneath it by default.

colander.Mapping deform.widget.MappingWidget

colander.Sequence deform.widget.SequenceWidget

colander.String deform.widget.TextInputWidget

colander.Integer deform.widget.TextInputWidget

colander.Float deform.widget.TextInputWidget

colander.Decimal deform.widget.TextInputWidget

colander.Boolean deform.widget.CheckboxWidget

colander.Date deform.widget.DateInputWidget

colander.DateTime deform.widget.DateTimeInputWidget

colander.Tuple deform.widget.Widget

Note: Not just any widget can be used with any schema type; the documentation for each widget usually indicates
what type it can be used against successfully. If all existing widgets provided by Deform are insufficient, you can use
a custom widget. See Writing Your Own Widget for more information about writing a custom widget.

If you are creating a schema that contains a type which is not in this list, or if you’d like to use a different widget for a
particular field, or you want to change the settings of the default widget associated with the type, you need to associate
the field with the widget “by hand”. There are a number of ways to do so, as outlined in the sections below.

As an argument to a colander.SchemaNode constructor

As of Deform 0.8, you may specify the widget as part of the schema:

1 import colander
2

3 from deform import Form
4 from deform.widget import TextInputWidget
5

6 class Person(colander.MappingSchema):
7 name = colander.SchemaNode(colander.String(),
8 widget=TextAreaWidget())
9 age = colander.SchemaNode(colander.Integer(),

10 validator=colander.Range(0, 200))
11

12 class People(colander.SequenceSchema):
13 person = Person()
14

15 class Schema(colander.MappingSchema):

12 Chapter 1. Topics

http://deformdemo.repoze.org/sequence_of_mappings/
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Mapping
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Sequence
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.String
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Integer
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Float
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Decimal
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Boolean
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Date
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.DateTime
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Tuple

deform Documentation, Release 0.9.7

16 people = People()
17

18 schema = Schema()
19

20 myform = Form(schema, buttons=(’submit’,))

Note above that we passed a widget argument to the name schema node in the Person class above. When a schema
containing a node with a widget argument to a schema node is rendered by Deform, the widget specified in the node
constructor is used as the widget which should be associated with that node’s form rendering. In this case, we’ll be
using a deform.widget.TextAreaWidget as the name widget.

Note: Widget associations done in a schema are always overridden by explicit widget assigments performed via
deform.Field.__setitem__() and deform.Field.set_widgets().

Using dictionary access to change the widget

After the deform.Form constructor is called with the schema you can change the widget used for a particular field
by using dictionary access to get to the field in question. A deform.Form is just another kind of deform.Field,
so the method works for either kind of object. For example:

1 from deform import Form
2 from deform.widget import TextInputWidget
3

4 myform = Form(schema, buttons=(’submit’,))
5 myform[’people’][’person’][’name’].widget = TextInputWidget(size=10)

This associates the String field named name in the rendered form with an explicitly created
deform.widget.TextInputWidget by finding the name field via a series of __getitem__ calls
through the field structure, then by assigning an explicit widget attribute to the name field.

You might want to do this in order to pass a size argument to the explicit widget creation, indicating that the size of
the name input field should be 10em rather than the default.

Although in the example above, we associated the name field with the same type of widget as its default we could
have just as easily associated the name field with a completely different widget using the same pattern. For example:

1 from deform import Form
2 from deform.widget import TextInputWidget
3

4 myform = Form(schema, buttons=(’submit’,))
5 myform[’people’][’person’][’name’].widget = TextAreaWidget()

The above renders an HTML textarea input element for the name field instead of an input type=text field.
This probably doesn’t make much sense for a field called name (names aren’t usually multiline paragraphs); but it
does let us demonstrate how different widgets can be used for the same field.

Using the deform.Field.set_widgets() method

Equivalently, you can also use the deform.Field.set_widgets() method to associate multiple widgets with
multiple fields in a form. For example:

1 from deform import Form
2 from deform.widget import TextInputWidget
3

4 myform = Form(schema, buttons=(’submit’,))

1.3. Common Needs 13

http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.String

deform Documentation, Release 0.9.7

5 myform.set_widgets({’people.person.name’:TextAreaWidget(),
6 ’people.person.age’:TextAreaWidget()})

Each key in the dictionary passed to deform.Field.set_widgets() is a “dotted name” which resolves to a
single field element. Each value in the dictionary is a widget instance. See deform.Field.set_widgets() for
more information about this method and dotted name resolution, including special cases which involve the “splat” (*)
character and the empty string as a key name.

1.3.2 Using Text Input Masks

The deform.widget.TextInputWidget and deform.widget.CheckedInputWidget widgets allow
for the use of a fixed-length text input mask. Use of a text input mask causes placeholder text to be placed in the
text field input, and restricts the type and length of the characters input into the text field.

For example:

When using a text input mask:

a represents an alpha character (A-Z,a-z)

9 represents a numeric character (0-9)

* represents an alphanumeric character (A-Z,a-z,0-9)

All other characters in the mask will be considered mask literals.

By default the placeholder text for non-literal characters in the field will be _ (the underscore character). To change
this for a given input field, use the mask_placeholder argument to the TextInputWidget:

form[’date’].widget = TextInputWidget(mask=’99/99/9999’,
mask_placeholder="-")

Example masks:

Date 99/99/9999

US Phone

999. 999-9999

US SSN 999-99-9999

When this option is used, the jquery.maskedinput library must be loaded into the page serving the form for the mask
argument to have any effect. A copy of this library is available in the static/scripts directory of the deform
package itself.

See http://deformdemo.repoze.org/text_input_masks/ for a working example.

Use of a text input mask is not a replacement for server-side validation of the field; it is purely a UI affordance. If the
data must be checked at input time a separate validator should be attached to the related schema node.

1.3.3 Using the AutocompleteInputWidget

The deform.widget.AutocompleteInputWidget widget allows for client side autocompletion from pro-
vided choices in a text input field. To use this you MUST ensure that jQuery and the JQuery UI plugin are available
to the page where the deform.widget.AutocompleteInputWidget widget is rendered.

For convenience a version of the JQuery UI (which includes the autocomplete sublibrary) is included in the
deform static directory. Additionally, the JQuery UI styles for the selection box are also included in the deform

14 Chapter 1. Topics

http://deformdemo.repoze.org/text_input_masks/

deform Documentation, Release 0.9.7

static directory. See Serving up the Rendered Form and The (High-Level) deform.Field.get_widget_resources()
Method for more information about using the included libraries from your application.

A very simple example of using deform.widget.AutocompleteInputWidget follows:

form[’frozznobs’].widget = AutocompleteInputWidget(
values=[’spam’, ’eggs’, ’bar’, ’baz’])

Instead of a list of values a URL can be provided to values:

form[’frobsnozz’].widget = AutocompleteInputWidget(
values=’http://example.com/someapi’)

In the above case a call to the url should provide results in a JSON-compatible format or JSONP-compatible response
if on a different host than the application. Something like either of these structures in JSON are suitable:

//Items are used as both value and label
[’item-one’, ’item-two’, ’item-three’]

//Separate values and labels
[

{’value’: ’item-one’, ’label’: ’Item One’},
{’value’: ’item-two’, ’label’: ’Item Two’},
{’value’: ’item-three’, ’label’: ’Item Three’}

]

The autocomplete plugin will add a query string to the request URL with the variable term which contains the user’s
input at that momement. The server may use this to filter the returned results.

For more information, see http://api.jqueryui.com/autocomplete/#option-source - specifically, the section concerning
the String type for the source option.

Some options for the jquery.autocomplete plugin are mapped and can be passed to the widget. See
deform.widget.AutocompleteInputWidget for details regarding the available options. Passing options
looks like:

form[’nobsfrozz’].widget = AutocompleteInputWidget(
values=[’spam, ’eggs’, ’bar’, ’baz’],
min_length=1)

See http://deformdemo.repoze.org/autocomplete_input/ and http://deformdemo.repoze.org/autocomplete_remote_input/
for working examples. A working example of a remote URL providing completion data can be found at
http://deformdemo.repoze.org/autocomplete_input_values/.

Use of deform.widget.AutocompleteInputWidget is not a replacement for server-side validation of the
field; it is purely a UI affordance. If the data must be checked at input time a separate validator should be attached to
the related schema node.

1.3.4 Creating a New Schema Type

Sometimes the default schema types offered by Colander may not be sufficient to model all the structures in your
application.

If this happens, refer to the Colander documentation on Defining a New Type.

1.3. Common Needs 15

http://api.jqueryui.com/autocomplete/#option-source
http://deformdemo.repoze.org/autocomplete_input/
http://deformdemo.repoze.org/autocomplete_remote_input/
http://deformdemo.repoze.org/autocomplete_input_values/
http://docs.pylonsproject.org/projects/colander/en/latest/extending.html#defining-a-new-type

deform Documentation, Release 0.9.7

1.4 Deform Components

A developer dealing with Deform has to understand a few fundamental types of objects and their relationships to one
another. These types are:

• schema nodes

• field objects

• widgets

1.4.1 The Relationship Between Widgets, Fields, and Schema Objects

The relationship between widgets, fields, and schema node objects is as follows:

• A schema is created by a developer. It is a collection of schema node objects.

• When a root schema node is passed to the deform.Form constructor, the result is a field object. For each node
defined by the developer in the schema recursively, a corresponding field is created.

• Each field in the resulting field tree has a default widget type. If the widget attribute of a field object is
not set directly by the developer, a property is used to create an instance of the default widget type when
field.widget is first requested. Sane defaults for each schema type typically exist; if a sane default cannot
be found, the deform.widget.TextInputWidget widget is used.

Note: The Colander documentation is a resource useful to Deform developers. In particular, it details how a schema is
created and used. Deform schemas are Colander schemas. The Colander documentation about how they work applies
to creating Deform schemas as well.

A widget is related to one or more schema node type objects. For example, a notional “TextInputWidget” may be
responsible for serializing textual data related to a schema node which has colander.String as its type into a
text input control, while a notional “MappingWidget” might be responsible for serializing a colander.Mapping
object into a sequence of controls. In both cases, the data type being serialized is related to the schema node type to
which the widget is related.

A widget has a relationship to a schema node via a field object. A field object has a reference to both a widget and a
schema node. These relationships look like this:

field object (‘‘field‘‘)
|
|
|----- widget object (‘‘field.widget‘‘)
|
|
\----- schema node object (‘‘field.schema‘‘)

1.5 Serialization and Deserialization

Serialization is the act of converting application data into a form rendering. Deserialization is the act of converting
data resulting from a form submission into application data.

16 Chapter 1. Topics

http://docs.pylonsproject.org/projects/colander/dev/
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.String
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.Mapping

deform Documentation, Release 0.9.7

1.5.1 Serialization

Serialization is what happens when you ask Deform to render a form given a schema. Here’s a high-level overview of
what happens when you ask Deform to do this:

• For each schema node in the schema provided by the application developer, Deform creates a field. This happens
recursively for each node in the schema. As a result, a tree of fields is created, mirroring the nodes in the schema.

• Each field object created as a result of the prior step knows about its associated schema node (it has a
field.schema attribute); each field also knows about an associated widget object (it has a field.widget
attribute). This widget object may be a default widget based on the schema node type or it might be overridden
by the application developer for a particular rendering.

• Deform passes an appstruct to the root schema node’s serializemethod to obtain a cstruct. The root schema
node is responsible for consulting its children nodes during this process to serialilize the entirety of the data into
a single cstruct.

• Deform passes the resulting cstruct to the root widget object’s serialize method to generate an HTML
form rendering. The root widget object is responsible for consulting its children nodes during this process to
serialilize the entirety of the data into an HTML form.

If you were to attempt to produce a high-level overview diagram this process, it might look like this:

appstruct -> cstruct -> form
| |
v v

schema widget

Peppercorn Structure Markers

You’ll see the default deform widget “serializations” (form renderings) make use of Peppercorn structure markers.

Peppercorn is a library that is used by Deform; it allows Deform to treat the form controls in an HTML form submission
as a stream instead of a flat mapping of name to value. To do so, it uses hidden form elements to denote structure.

Peppercorn structure markers come in pairs which have a begin token and an end token. For example, a given form
rendering might have a part that looks like so:

1 <html>
2 ...
3 <input type="hidden" name="__start__" value="date:mapping"/>
4 <input name="day"/>
5 <input name="month"/>
6 <input name="year"/>
7 <input type="hidden" name="__end__"/>
8 ...
9 </html>

The above example shows an example of a pair of peppercorn structure markers which begin and end a mapping. The
example uses this pair to means that a the widget related to the date node in the schema will be be passed a pstruct
that is a dictionary with multiple values during deserialization: the dictionary will include the keys day , month, and
year, and the values will be the values provided by the person interacting with the related form controls.

Other uses of Peppercorn structure markers include: a “confirm password” widget can render a peppercorn mapping
with two text inputs in it, a “mapping widget” can serve as a substructure for a fieldset. Basically, Peppercorn makes it
more pleasant to deal with form submission data by pre-converting the data from a flat mapping into a set of mappings,
sequences, and strings during deserialization.

1.5. Serialization and Deserialization 17

deform Documentation, Release 0.9.7

However, if a widget doesn’t want to do anything fancy and a particular widget is completely equivalent to one form
control, it doesn’t need to use any Peppercorn structure markers in its rendering.

Note: See the Peppercorn documentation for more information about using peppercorn structure markers in HTML.

1.5.2 Deserialization

High-level overview of how “deserialization” (converting form control data resulting from a form submission to ap-
plication data) works:

• For each schema node in the schema provided by the application developer, Deform creates a field. This happens
recursively for each node in the schema. As a result, a tree of fields is created, mirroring the nodes in the schema.

• Each field object created as a result of the prior step knows about its associated schema node (it has a
field.schema attribute); each field also knows about an associated widget object (it has a field.widget
attribute). This widget object may be a default widget based on the schema node type or it might be overridden
by the application developer for a particular rendering.

• Deform passes a set of form controls to the parse method of Peppercorn in order to obtain a pstruct.

• Deform passes the resulting pstruct to the root widget node’s deserialize method in order to generate a
cstruct.

• Deform passes the resulting cstruct to the root schema node’s deserialize method to generate an appstruct.
This may result in a validation error. If a validation error occurs, the form may be rerendered with error markers
in place.

If you were to attempt to produce a high-level overview diagram this process, it might look like this:

formcontrols -> pstruct -> cstruct -> appstruct
| | |
v v v

peppercorn widget schema

When a user presses the submit button on any Deform form, Deform itself runs the resulting form controls through the
peppercorn.parse method. This converts the form data into a mapping. The structure markers in the form data
indicate the internal structure of the mapping.

For example, if the form submitted had the following data:

1 <html>
2 ...
3 <input type="hidden" name="__start__" value="date:mapping"/>
4 <input name="day"/>
5 <input name="month"/>
6 <input name="year"/>
7 <input type="hidden" name="__end__"/>
8 ...
9 </html>

There would be a date key in the root of the pstruct mapping which held three keys: day, month, and year.

Note: See the Peppercorn documentation for more information about the result of the peppercorn.parsemethod
and how it relates to form control data.

The bits of code that are “closest” to the browser are called “widgets”. A chapter about creating widgets exists in this
documentation at Writing Your Own Widget.

18 Chapter 1. Topics

http://docs.pylonsproject.org/projects/peppercorn/dev/
http://docs.pylonsproject.org/projects/peppercorn/dev/

deform Documentation, Release 0.9.7

A widget has a deserialize method. The deserialize method is passed a structure (a pstruct) which is shorthand
for “Peppercorn structure”. A pstruct might be a string, it might be a mapping, or it might be a sequence, depending
on the output of peppercorn.parse related to its schema node against the form control data.

The job of the deserialize method of a widget is to convert the pstruct it receives into a cstruct. A cstruct is a shorthand
for “Colander structure”. It is often a string, a mapping or a sequence.

An application eventually wants to deal in types less primitive than strings: a model instance or a datetime object.
An appstruct is the data that an application that uses Deform eventually wants to deal in. Therefore, once a widget
has turned a pstruct into a cstruct, the schema node related to that widget is responsible for converting that cstruct to
an appstruct. A schema node possesses its very own deserialize method, which is responsible for accepting a
cstruct and returning an appstruct.

Raising Errors During Deserialization

If a widget determines that a pstruct value cannot be converted successfully to a cstruct value during deserialization, it
may raise an colander.Invalid exception.

When it raises this exception, it can use the field object as a “scratchpad” to hold on to other data, but it must pass a
value attribute to the exception constructor. For example:

1 import colander
2

3 def serialize(self, field, cstruct, readonly=False):
4 if cstruct is colander.null:
5 cstruct = ’’
6 confirm = getattr(field, ’confirm’, ’’)
7 template = readonly and self.readonly_template or self.template
8 return field.renderer(template, field=field, cstruct=cstruct,
9 confirm=confirm, subject=self.subject,

10 confirm_subject=self.confirm_subject,
11)
12

13 def deserialize(self, field, pstruct):
14 if pstruct is colander.null:
15 return colander.null
16 value = pstruct.get(’value’) or ’’
17 confirm = pstruct.get(’confirm’) or ’’
18 field.confirm = confirm
19 if value != confirm:
20 raise Invalid(field.schema, self.mismatch_message, value)
21 return value

The schema type associated with this widget is expecting a single string as its cstruct. The value passed to the
exception constructor raised during the deserialize when value != confirm is used as that cstruct value
when the form is rerendered with error markers. The confirm value is picked off the field value when the form is
rerendered at this time.

1.5.3 Say What?

Q: “So deform colander and peppercorn are pretty intertwingled?”

A: “Colander and Peppercorn are unrelated; Deform is effectively something that integrates colander and pep-
percorn together.”

1.5. Serialization and Deserialization 19

deform Documentation, Release 0.9.7

1.6 Templates

A set of Chameleon templates is used by the default widget set present in deform to make it easier to customize the
look and feel of form renderings.

1.6.1 Overriding the default templates

The default widget set uses templates that live in the templates directory of the deform package. If you are
comfortable using the Chameleon templating system, but you simply need to override some of these templates you
can create your own template directory and copy the template you wish to customize into it. You can then either
configure your new template directory to be used for all forms or for specific forms as described below.

For relevant API documentation see the deform.ZPTRendererFactory class and the deform.Field class
renderer argument.

Overriding for all forms

To globally override templates use the deform.Field.set_zpt_renderer() class method to change the set-
tings associated with the default ZPT renderer:

from pkg_resources import resource_filename
from deform import Form

deform_templates = resource_filename(’deform’, ’templates’)
search_path = (’/path/to/my/templates’, deform_templates)

Form.set_zpt_renderer(search_path)

Now, the templates in /path/to/my/templates will be used in preference to the default templates whenever a
form is rendered. Any number of template directories can be put into the search path and will be searched in the order
specified with the first matching template found being used.

Overriding for specific forms

If you only want to change the templates used for a specific form, or even for the specific rendering of a form, you can
pass a renderer argument to the deform.Form constructor, e.g.:

from deform import ZPTRendererFactory
from deform import Form
from pkg_resources import resource_filename

deform_templates = resource_filename(’deform’, ’templates’)
search_path = (’/path/to/my/templates’, deform_templates)
renderer = ZPTRendererFactory(search_path)

form = Form(someschema, renderer=renderer)

When the above form is rendered, the templates in /path/to/my/templates will be used in preference to the
default templates. Any number of template directories can be put into the search path and will be searched in the order
specified with the first matching template found being used.

20 Chapter 1. Topics

deform Documentation, Release 0.9.7

1.6.2 Using an alternative templating system

A renderer is used by the each widget implementation in deform to render HTML from a set of templates. By
default, each of the default Deform widgets uses a template written in the Chameleon ZPT templating language. If
you’d rather use a different templating system for your widgets, you can. To do so, you need to:

• Write an alternate renderer that uses the templating system of your choice.

• Optionally, convert all the existing Deform templates to your templating language of choice. This is only
necessary if you choose to use the widgets that ship as part of Deform.

• Set the default renderer of the deform.Form class.

Creating a Renderer

A renderer is simply a callable that accepts a single positional argument, which is the template name, and a set of
keyword arguments. The keyword arguments it will receive are arbitrary, and differ per widget, but the keywords
usually include field, a field object, and cstruct, the data structure related to the field that must be rendered by
the template itself.

Here’s an example of a (naive) renderer that uses the Mako templating engine:

1 from mako.template import Template
2

3 def mako_renderer(tmpl_name, **kw):
4 template = Template(filename=’/template_dir/%s.mak’ % tmpl_name)
5 return template.render(**kw)

Note: A more robust implementation might use a template loader that does some caching, or it might allow the
template directory to be configured.

Note the mako_renderer function we’ve created actually appends a .mak extension to the tmpl_name it is
passed. This is because Deform passes a template name without any extension to allow for different templating
systems to be used as renderers.

Our mako_renderer renderer is now ready to have some templates created for it.

Converting the Default Deform Templates

The deform package contains a directory named templates. You can see the current trunk contents of this direc-
tory by browsing the source repository. Each file within this directory and any of its subdirectories is a Chameleon
ZPT template that is used by a default Deform widget.

For example, textinput.pt ZPT template, which is used by the deform.widget.TextInputWidget wid-
get and which renders a text input control looks like this:

1 <span tal:define="name name|field.name;
2 size size|field.widget.size;
3 css_class css_class|field.widget.css_class;
4 oid oid|field.oid;
5 mask mask|field.widget.mask;
6 mask_placeholder mask_placeholder|field.widget.mask_placeholder;
7 style style|field.widget.style|None;
8 "
9 tal:omit-tag="">

10 <input type="text" name="${name}" value="${cstruct}"

1.6. Templates 21

https://github.com/Pylons/deform/tree/master/deform/templates

deform Documentation, Release 0.9.7

11 tal:attributes="size size;
12 class css_class;
13 style style"
14 id="${oid}"/>
15 <script tal:condition="mask" type="text/javascript">
16 deform.addCallback(
17 ’${oid}’,
18 function (oid) {
19 $("#" + oid).mask("${mask}",
20 {placeholder:"${mask_placeholder}"});
21 });
22 </script>
23

If we created a Mako renderer, we would need to create an analogue of this template. Such an analogue should be
named textinput.mak and might look like this:

1 <input type="text" name="${field.name}" value="${cstruct}"
2 % if field.widget.size:
3 size=${field.widget.size}
4 % endif
5 />

Whatever the body of the template looks like, the resulting textinput.mak should be placed in a directory that is
meant to house other Mako template files which are going to be consumed by Deform. You’ll need to convert each
of the templates that exist in the Deform templates directory and its subdirectories, and put all of the resulting
templates into your private mako templates dir too, retaining any directory structure (e.g., retaining the fact that
there is a readonly directory and converting its contents).

Configuring Your New Renderer as the Default

Once you’ve created a new renderer and created templates that match all the existing Deform templates, you can now
configure your renderer to be used by Deform. In startup code, add something like:

1 from mymakorenderer import mako_renderer
2

3 from deform import Form
4 Form.set_default_renderer(mako_renderer)

The deform widget system will now use your renderer as the default renderer.

Note that calling deform.Field.set_default_renderer() will cause this renderer to be used by default by
all consumers in the process it’s invoked in. This is potentially undesirable: you may need the same process to use
more than one renderer perhaps because that same process houses two different Deform-using systems. In this case,
instead of using the set_default_renderer method, you can write your application in such a way that it passes
a renderer to the Form constructor:

1 from mymakorenderer import mako_renderer
2 from deform import Form
3

4 ...
5 schema = SomeSchema()
6 form = Form(schema, renderer=mako_renderer)

22 Chapter 1. Topics

deform Documentation, Release 0.9.7

1.7 Widgets

A widget is a bit of code that is willing to:

• serialize a cstruct into HTML for display in a form rendering

• deserialize data obtained from a form post (a pstruct) into a data structure suitable for deserialization by a
schema node (a cstruct).

• handle validation errors

Deform ships with a number of built-in widgets. You hopefully needn’t create your own widget unless you’re trying to
do something that the built-in widget set didn’t anticipate. However, when a built-in Deform widget doesn’t do exactly
what you want, you can extend Deform by creating a new widget that is more suitable for the task.

1.7.1 Widget Templates

A widget needn’t use a template file, but each of the built-in widgets does. A template is usually assigned to a default
widget via its template and readonly_template attributes; those attributes are then used in the serialize
method of the widget, ala:

1 def serialize(self, field, cstruct, readonly=False):
2 if cstruct in (null, None):
3 cstruct = ’’
4 template = readonly and self.readonly_template or self.template
5 return field.renderer(template, field=field, cstruct=cstruct)

The deform.field.renderer() method is a method which accepts a logical template name (such as
texinput) and renders it using the active Deform renderer; the default renderer is the ZPT renderer, which uses
the templates within the deform/templates directory within the deform package. See Templates for more
information about widget templates.

1.7.2 Widget Javascript

Some built-in Deform widgets require JavaScript. In order for the built-in Deform widgets that require JavaScript
to function properly, the deform.load() JavaScript function must be called when the page containing a form is
renderered.

Some built-in Deform widgets include JavaScript which operates against a local input element when it is loaded. For
example, the deform.widget.AutocompleteInputWidget template looks like this:

1
2 <input type="text"
3 name="${field.name}"
4 value="${cstruct}"
5 tal:attributes="size field.widget.size;
6 class field.widget.css_class"
7 id="${field.oid}"/>
8 <script tal:condition="field.widget.values" type="text/javascript">
9 deform.addCallback(

10 ’${field.oid}’,
11 function (oid) {
12 $(’#’ + oid).autocomplete({source: ${values}});
13 $(’#’ + oid).autocomplete("option", ${options});
14 }
15);

1.7. Widgets 23

deform Documentation, Release 0.9.7

16 </script>
17

field.oid refers to the ordered identifier that Deform gives to each field widget rendering. You can see that
the script which runs when this widget is included in a rendering calls a function named deform.addCallback,
passing it the value of field.oid and a callback function as oid and callback respectively. When it is executed,
the callback function calls the autocomplete method of the JQuery selector result for $(’#’ + oid).

The callback define above will be called under two circumstances:

• When the page first loads and the deform.load() JavaScript function is called.

• When a sequence is involved, and a sequence item is added, resulting in a call to the
deform.addSequenceItem() JavaScript function.

The reason that default Deform widgets call deform.addCallback rather than simply using ${field.oid}
directly in the rendered script is becase sequence item handling happens entirely client side by cloning an existing
prototype node, and before a sequence item can be added, all of the id attributes in the HTML that makes up the
field must be changed to be unique. The addCallback indirection assures that the callback is executed with the
modified oid rather than the protoype node’s oid. Your widgets should do the same if they are meant to be used as part
of sequences.

1.7.3 Widget Requirements and Resources

Some widgets require external resources to work properly (such as CSS and Javascript files). Deform provides mech-
anisms that will allow you to determine which resources are required by a particular form rendering, so that your
application may include them in the HEAD of the page which includes the rendered form.

The (Low-Level) deform.Field.get_widget_requirements() Method

After a form has been fully populated with widgets, the deform.Field.get_widget_requirements()
method called on the form object will return a sequence of two-tuples. When a non-empty sequence is returned
by deform.Field.get_widget_requirements(), it means that one or more CSS or JavaScript resources
will need to be loaded by the page performing the form rendering in order for some widget on the page to function
properly.

The first element in each two-tuple represents a requirement name. It represents a logical reference to one or more
Javascript or CSS resources. The second element in each two-tuple is the reqested version of the requirement. It may
be None, in which case the version required is unspecified. When the version required is unspecified, a default version
of the resource set will be chosen.

The requirement name / version pair implies a set of resources, but it is not a URL, nor is it a filename
or a filename prefix. The caller of deform.Field.get_widget_requirements() must use the re-
source names returned as logical references. For example, if the requirement name is jquery, and the
version id is 1.4.2, the caller can take that to mean that the JQuery library should be loaded within
the page header via, for example the inclusion of the HTML <script type="text/javascript"
src="http://deformdemo.repoze.org/static/scripts/jquery-1.4.2.min.js"></script>
within the HEAD tag of the rendered HTML page.

Users will almost certainly prefer to use the deform.Field.get_widget_resources() API (explained in
the succeeding section) to obtain a fully expanded list of relative resource paths required by a form rendering.
deform.Field.get_widget_requirements(), however, may be used if custom requirement name to re-
source mappings need to be done without the help of a resource registry.

See also the description of requirements in deform.Widget.

24 Chapter 1. Topics

deform Documentation, Release 0.9.7

The (High-Level) deform.Field.get_widget_resources() Method

A mechanism to resolve the requirements of a form into relative resource filenames exists as a method:
deform.Field.get_widget_resources().

Note: Because Deform is framework-agnostic, this method only reports to its caller the resource paths required for a
successful form rendering, it does not (cannot) arrange for the reported requirements to be satisfied in a page rendering;
satisfying these requirements is the responsibility of the calling code.

The deform.Field.get_widget_resources() method returns a dictionary with two keys: js and css.
The value related to each key in the dictionary is a list of relative resource names. Each resource name is assumed to
be relative to the static directory which houses your application’s Deform resources (usually a copy of the static
directory inside the Deform package). If the method is called with no arguments, it will return a dictionary in the same
form representing resources it believes are required by the current form. If it is called with a set of requirements (the
value returned by the deform.Field.get_widget_requirements() method), it will attempt to resolve the
requirements passed to it. You might use it like so:

1 import deform
2

3 form = deform.Form(someschema)
4 resources = form.get_widget_resources()
5 js_resources = resources[’js’]
6 css_resources = resources[’css’]
7 js_links = [’http://my.static.place/%s’ % r for r in js_resources]
8 css_links = [’http://my.static.place/%s’ % r for r in css_resources]
9 js_tags = [’<script type="text/javascript" src="%s"></script>’ % link

10 for link in js_links]
11 css_tags = [’<link rel="stylesheet" href="%s"/>’ % link
12 for link in css_links]
13 tags = js_tags + css_tags
14 return {’form’:form.render(), ’tags’:tags}

The template rendering the return value would need to make sense of “tags” (it would inject them whole-
sale into the HEAD). Obviously, other strategies for rendering HEAD tags can be devised using the result of
get_widget_resources, this is just an example.

deform.Field.get_widget_resources() uses a resource registry to map requirement names to resource
paths. If deform.Field.get_widget_resources() cannot resolve a requirement name, or it cannot find a
set of resources related to the supplied version of the requirement name, an ValueError will be raised. When this
happens, it means that the resource registry associated with the form cannot resolve a requirement name or version.
When this happens, a resource registry that knows about the requirement will need to be associated with the form
explicitly, e.g.:

1 registry = deform.widget.ResourceRegistry()
2 registry.set_js_resources(’requirement’, ’ver’, ’bar.js’, ’baz.js’)
3 registry.set_css_resources(’requirement’, ’ver’, ’foo.css’, ’baz.css’)
4

5 form = Form(schema, resource_registry=registry)
6 resources = form.get_widget_resources()
7 js_resources = resources[’js’]
8 css_resources = resources[’css’]
9 js_links = [’http://my.static.place/%s’ % r for r in js_resources]

10 css_links = [’http://my.static.place/%s’ % r for r in css_resources]
11 js_tags = [’<script type="text/javascript" src="%s"></script>’ % link
12 for link in js_links]
13 css_tags = [’<link type="text/css" href="%s"/>’ % link
14 for link in css_links]

1.7. Widgets 25

http://docs.python.org/dev/library/exceptions.html#ValueError

deform Documentation, Release 0.9.7

15 tags = js_tags + css_tags
16 return {’form’:form.render(), ’tags’:tags}

An alternate default resource registry can be associated with all forms by calling the
deform.Field.set_default_resource_registry() class method:

1 registry = deform.widget.ResourceRegistry()
2 registry.set_js_resources(’requirement’, ’ver’, ’bar.js’, ’baz.js’)
3 registry.set_css_resources(’requirement’, ’ver’, ’foo.css’, ’baz.css’)
4 Form.set_default_resource_registry(registry)

This will result in the registry registry being used as the default resource registry for all form instances created
after the call to set_default_resource_registry, hopefully allowing resource resolution to work properly
again.

See also the documentation of the resource_registry argument in deform.Field and the documentation of
deform.widget.ResourceRegistry.

Specifying Widget Requirements

When creating a new widget, you may specify its requirements by using the requirements attribute:

1 from deform.widget import Widget
2

3 class MyWidget(Widget):
4 requirements = ((’jquery’, ’1.4.2’),)

There are no hard-and-fast rules about the composition of a requirement name. Your widget’s docstring should explain
what its requirement names mean, and how map to the logical requirement name to resource paths within a a resource
registry. For example, your docstring might have text like this: “This widget uses a library name of jquery.tools
in its requirements list. The name jquery.tools implies that the JQuery Tools library must be loaded before
rendering the HTML page containing any form which uses this widget; JQuery Tools depends on JQuery, so JQuery
should also be loaded. The widget expects JQuery Tools version X.X (as specified in the version field), which expects
JQuery version X.X to be loaded previously.”. It might go on to explain that a set of resources need to be added
to a resource registry in order to resolve the logical jquery.tools name to a set of relative resource paths, and
that the resulting custom resource registry should be used when constructing the form. The default resource registry
(deform.widget.resource_registry) does not contain resource mappings for your newly-created require-
ment.

1.7.4 Writing Your Own Widget

Writing a Deform widget means creating an object that supplies the notional Widget interface, which is described
in the deform.widget.Widget class documentation. The easiest way to create something that implements this
interface is to create a class which inherits directly from the deform.widget.Widget class itself.

The deform.widget.Widget class has a concrete implementation of a constructor and the handle_error
method as well as default values for all required attributes. The deform.widget.Widget class also has abstract
implementations of serialize and deserialize each of which which raises a NotImplementedError
exception; these must be overridden by your subclass; you may also optionally override the handle_error method
of the base class.

For example:

1 from deform.widget import Widget
2

3 class MyInputWidget(Widget):

26 Chapter 1. Topics

http://docs.python.org/dev/library/exceptions.html#NotImplementedError

deform Documentation, Release 0.9.7

4 def serialize(self, field, cstruct=None, readonly=False):
5 ...
6

7 def deserialize(self, field, pstruct=None):
8 ...
9

10 def handle_error(self, field, error):
11 ...

We describe the serialize, deserialize and handle_error methods below.

The serialize Method

The serialize method of a widget must serialize a cstruct value to an HTML rendering. A cstruct value is the
value which results from a Colander schema serialization for the schema node associated with this widget. The result
of this method should always be a unicode type containing some HTML.

The field argument passed to serialize is the field object to which this widget is attached. Because a field object
itself has a reference to the widget it uses (as field.widget), the field object is passed to the serialize method
of the widget rather than the widget having a field attribute in order to avoid a circular reference.

If the readonly argument passed to serialize is True, it indicates that the result of this serialization should be
a read-only rendering (no active form controls) of the cstruct data to HTML.

Let’s pretend our new MyInputWidget only needs to create a text input control during serialization. Its
serialize method might get defined as so:

1 from deform.widget import Widget
2 from colander import null
3 import cgi
4

5 class MyInputWidget(Widget):
6 def serialize(self, field, cstruct=None, readonly=False):
7 if cstruct is null:
8 cstruct = u’’
9 quoted = cgi.escape(cstruct, quote=’"’)

10 return u’<input type="text" value="%s">’ % quoted

Note that every serialize method is responsible for returning a serialization, no matter whether it is provided data
by its caller or not. Usually, the value of cstruct will contain appropriate data that can be used directly by the
widget’s rendering logic. But sometimes it will be colander.null. It will be colander.null when a form
which uses this widget is serialized without any data; for example an “add form”.

All widgets must check if the value passed as cstruct is the colander.null sentinel value during serialize.
Widgets are responsible for handling this eventuality, often by serializing a logically “empty” value.

Regardless of how the widget attempts to compute the default value, it must still be able to return a rendering when
cstruct is colander.null. In the example case above, the widget uses the empty string as the cstruct value,
which is appropriate for this type of “scalar” input widget; for a more “structural” kind of widget the default might be
something else like an empty dictionary or list.

The MyInputWidget we created in the example does not use a template. Any widget may use a template, but using
one is not required; whether a particular widget uses a template is really none of Deform’s business: deform simply
expects a widget to return a Unicode object containing HTML from the widget’s serialize method; it doesn’t
really much care how the widget creates that Unicode object.

Each of the built-in Deform widgets (the widget implementations in deform.widget) happens to use a template
in order to make it easier for people to override how each widget looks when rendered without needing to change
Deform-internal Python code. Instead of needing to change the Python code related to the widget itself, users of the

1.7. Widgets 27

deform Documentation, Release 0.9.7

built-in widgets can often perform enough customization by replacing the template associated with the built-in widget
implementation. However, this is purely a convenience; templates are largely a built-in widget set implementation
detail, not an integral part of the core Deform framework.

Note that “scalar” widgets (widgets which represent a single value as opposed to a collection of values) are not
responsible for providing “page furniture” such as a “Required” label or a surrounding div which is used to pro-
vide error information when validation fails. This is the responsibility of the “structural” widget which is asso-
ciated with the parent field of the scalar widget’s field (the “parent widget”); the parent widget is usually one of
deform.widget.MappingWidget or deform.widget.SequenceWidget.

The deserialize Method

The deserialize method of a widget must deserialize a pstruct value to a cstruct value and return the cstruct
value. The pstruct argument is a value resulting from the parse method of the Peppercorn package. The field
argument is the field object to which this widget is attached.

1 from deform.widget import Widget
2 from colander import null
3 import cgi
4

5 class MyInputWidget(Widget):
6 def serialize(self, field, cstruct, readonly=False):
7 if cstruct is null:
8 cstruct = u’’
9 return ’<input type="text" value="%s">’ % cgi.escape(cstruct)

10

11 def deserialize(self, field, pstruct):
12 if pstruct is null:
13 return null
14 return pstruct

Note that the deserialize method of a widget must, like serialize, deal with the possibility of being handed a
colander.null value. colander.null will be passed to the widget when a value is missing from the pstruct.
The widget usually handles being passed a colander.null value in deserialize by returning colander.null‘,
which signifies to the underlying schema that the default value for the schema node should be used if it exists.

The only other real constraint of the deserialize method is that the serialize method must be able to reserialize the
return value of deserialize.

The handle_error Method

The deform.widget.Widget class already has a suitable implementation; if you subclass from
deform.widget.Widget, overriding the default implementation is not necessary unless you need special error-
handling behavior.

Here’s an implementation of the deform.widget.Widget.handle_error() method in the MyInputWidget
class:

1 from deform.widget import Widget
2 from colander import null
3 import cgi
4

5 class MyInputWidget(Widget):
6 def serialize(self, field, cstruct, readonly=False):
7 if cstruct is null:
8 cstruct = u’’
9 return ’<input type="text" value="%s">’ % cgi.escape(cstruct)

28 Chapter 1. Topics

deform Documentation, Release 0.9.7

10

11 def deserialize(self, field, pstruct):
12 if pstruct is null:
13 return null
14 return pstruct
15

16 def handle_error(self, field, error):
17 if field.error is None:
18 field.error = error
19 for e in error.children:
20 for num, subfield in enumerate(field.children):
21 if e.pos == num:
22 subfield.widget.handle_error(subfield, e)

The handle_error method of a widget must:

• Set the error attribute of the field object it is passed if the error attribute has not already been set.

• Call the handle_error methods of any subfields which also have errors.

The ability to override handle_error exists purely for advanced tasks, such as presenting all child errors of a field
on a parent field. For example:

1 def handle_error(self, field, error):
2 msgs = []
3 if error.msg:
4 field.error = error
5 else:
6 for e in error.children:
7 msgs.append(’line %s: %s’ % (e.pos+1, e))
8 field.error = Invalid(field.schema, ’\n’.join(msgs))

This implementation does not attach any errors to field children; instead it attaches all of the child errors to the field
itself for review.

The Template

The template you use to render a widget will receive input from the widget object, including field, which will be
the field object represented by the widget. It will usually use the field.name value as the name input element of
the primary control in the widget, and the field.oid value as the id element of the primary control in the widget.

1.8 Example App

An example is worth a thousand words. Here’s an example Pyramid application demonstrating how one might use
deform to render a form.

Warning: deform is not dependent on pyramid at all; we use Pyramid in the examples below only to facilitate
demonstration of an actual end-to-end working application that uses Deform.

Here’s the Python code:

1 import os
2

3 from paste.httpserver import serve
4 from pyramid.config import Configurator
5

1.8. Example App 29

http://pylonsproject.org

deform Documentation, Release 0.9.7

6 from colander import MappingSchema
7 from colander import SequenceSchema
8 from colander import SchemaNode
9 from colander import String

10 from colander import Boolean
11 from colander import Integer
12 from colander import Length
13 from colander import OneOf
14

15 from deform import ValidationFailure
16 from deform import Form
17 from deform import widget
18

19

20 here = os.path.dirname(os.path.abspath(__file__))
21

22 colors = ((’red’, ’Red’), (’green’, ’Green’), (’blue’, ’Blue’))
23

24 class DateSchema(MappingSchema):
25 month = SchemaNode(Integer())
26 year = SchemaNode(Integer())
27 day = SchemaNode(Integer())
28

29 class DatesSchema(SequenceSchema):
30 date = DateSchema()
31

32 class MySchema(MappingSchema):
33 name = SchemaNode(String(),
34 description = ’The name of this thing’)
35 title = SchemaNode(String(),
36 widget = widget.TextInputWidget(size=40),
37 validator = Length(max=20),
38 description = ’A very short title’)
39 password = SchemaNode(String(),
40 widget = widget.CheckedPasswordWidget(),
41 validator = Length(min=5))
42 is_cool = SchemaNode(Boolean(),
43 default = True)
44 dates = DatesSchema()
45 color = SchemaNode(String(),
46 widget = widget.RadioChoiceWidget(values=colors),
47 validator = OneOf((’red’, ’blue’)))
48

49 def form_view(request):
50 schema = MySchema()
51 myform = Form(schema, buttons=(’submit’,))
52

53 if ’submit’ in request.POST:
54 controls = request.POST.items()
55 try:
56 myform.validate(controls)
57 except ValidationFailure, e:
58 return {’form’:e.render()}
59 return {’form’:’OK’}
60

61 return {’form’:myform.render()}
62

63 if __name__ == ’__main__’:

30 Chapter 1. Topics

deform Documentation, Release 0.9.7

64 settings = dict(reload_templates=True)
65 config = Configurator(settings=settings)
66 config.add_view(form_view, renderer=os.path.join(here, ’form.pt’))
67 config.add_static_view(’static’, ’deform:static’)
68 app = config.make_wsgi_app()
69 serve(app)

Here’s the Chameleon ZPT template named form.pt, placed in the same directory:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml">
4 <head>
5 <title>
6 Deform Sample Form App
7 </title>
8 <!-- Meta Tags -->
9 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10 <!-- JavaScript -->
11 <script type="text/javascript" src="static/scripts/deform.js"></script>
12 <!-- CSS -->
13 <link rel="stylesheet" href="static/css/form.css" type="text/css" />
14 </head>
15 <body id="public">
16 <div id="container">
17 <h1>Sample Form</h1>
18
19 </div>
20 </body>
21 </html>

1.9 Using Ajax Forms

To create a form object that uses AJAX, we do this:

1 from deform import Form
2 myform = Form(schema, buttons=(’submit’,), use_ajax=True)

Creating a Form Object indicates how to create a Form object based on a schema and some buttons. Creating an AJAX
form uses the same constructor as creating a non-AJAX form: the only difference between the example provided in the
Creating a Form Object section and the example above of creating an AJAX form is the additional use_ajax=True
argument passed to the Form constructor.

If use_ajax is passed as True to the constructor of a deform.Form object, the form page is rendered in such a
way that when a submit button is pressed, the page is not reloaded. Instead, the form is posted, and the result of the
post replaces the form element’s DOM node.

Examples of using the AJAX facilities in Deform are showcased on the http://deformdemo.repoze.org demonstration
website:

• Redirection on validation success

• No redirection on validation success

Note that for AJAX forms to work, the deform.js and jquery.form.js libraries must be included in the
rendering of the page that includes the form itself, and the deform.load() JavaScript function must be called by
the rendering in order to associate the form with AJAX. This is the responsibility of the wrapping page. Both libraries

1.9. Using Ajax Forms 31

http://deformdemo.repoze.org
http://deformdemo.repoze.org/ajaxform/
http://deformdemo.repoze.org/ajaxform/

deform Documentation, Release 0.9.7

are present in the static directory of the deform package itself. See Widget Requirements and Resources for a
way to detect which JavaScript libraries are required for a particular form rendering.

1.10 Internationalization

Deform is fully internationalizable and localizable. gettext .mo. files exist in the deform and colander packages
which contain (currently incomplete) translations to various languages for the purpose of rendering localized error
messages.

Following should get you started with i18n in pyramid:

import deform

from pkg_resources import resource_filename
from pyramid.i18n import get_localizer
from pyramid.threadlocal import get_current_request

def main(global_config, **settings):
config = Configurator(settings=settings)
config.add_translation_dirs(

’colander:locale’,
’deform:locale’,

)

def translator(term):
return get_localizer(get_current_request()).translate(term)

deform_template_dir = resource_filename(’deform’, ’templates/’)
zpt_renderer = deform.ZPTRendererFactory(

[deform_template_dir],
translator=translator)

deform.Form.set_default_renderer(zpt_renderer)

See the Internationalization demo for an example of how deform error and status messages can be localized. This
demonstration uses the internationalization and localization features of Pyramid to render Deform error messages into
Chameleon form renderings.

1.11 API Documentation

1.11.1 Form-Related

1.11.2 Type-Related

See also the type- and schema-related documentation in Colander.

1.11.3 Exception-Related

See also the exception-related documentation in Colander.

32 Chapter 1. Topics

http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander
http://deformdemo.repoze.org/i18n/
http://docs.pylonsproject.org/projects/pyramid/1.0/narr/i18n.html

deform Documentation, Release 0.9.7

1.11.4 Template-Related

default_renderer
The default ZPT template renderer (uses the deform/templates/ directory as a template source).

1.11.5 Widget-Related

default_resource_registry
The default resource registry (maps Deform-internal widget requirement strings to resource paths). This
resource registry is used by forms which do not specify their own as a constructor argument, unless
deform.Field.set_default_resource_registry() is used to change the default resource reg-
istry.

1.12 Interfaces

The below are abstract interfaces expected to be fulfilled by various Deform implementations.

1.13 Glossary

appstruct A raw application data structure (complex Python objects).

Chameleon chameleon is an attribute language template compiler which supports the ZPT (Zope Page Templates)
templating specification. It is written and maintained by Malthe Borch.

Colander A schema package used by Deform to provide serialization and validation facilities.

cstruct Data serialized by Colander to a representation suitable for consumption by the serialize method of a
deform widget, usually while a form is being rendered.

default renderer The template renderer used when no other renderer is specified. It uses the Chameleon templating
engine.

field An object in the graph generated by deform that has access to a schema node object and a widget object. The
scope of a field object is generally limited to the scope of a single HTTP request, so field objects are often used
to maintain state information during the request.

form controls A sequence of browser renderings of user interface elements. These are also known as “fields” as per
the the RFC 2388 definition of “field”, however Deform uses the term field for another concept, so we call them
controls within the Deform documentation.

Gettext The GNU gettext library, used by the deform translation machinery.

jQuery jQuery is a JavaScript library for making client side changes to HTML.

JQuery UI A library used by Deform for various widget theming, effects and functionality: See http://jqueryui.com/.

jquery.autocomplete A jQuery plugin library that allows for autocompleting a value in a text input, making it
easier to find and select a value from a possibly large list. The data may be local or remote. See also
http://docs.jquery.com/Plugins/Autocomplete for more details.

jquery.maskedinput A JQuery plugin library that allows for input masks in text inputs. For example, a mask for
a US telephone number might be (999)-999-9999. See also http://digitalbush.com/projects/masked-input-
plugin/. Deform supports input masks in its default deform.widget.TextInputWidget widget.

jquery.ui.autocomplete A JQuery UI sublibrary for autocompletion of text fields. See
http://docs.jquery.com/UI/Autocomplete.

1.12. Interfaces 33

http://chameleon.repoze.org
http://docs.pylonsproject.org/projects/colander/dev/
http://www.servlets.com/rfcs/rfc2388.txt
http://www.gnu.org/software/gettext/
http://jquery.com/
http://jqueryui.com/
http://docs.jquery.com/Plugins/Autocomplete
http://digitalbush.com/projects/masked-input-plugin/
http://digitalbush.com/projects/masked-input-plugin/
http://docs.jquery.com/UI/Autocomplete

deform Documentation, Release 0.9.7

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and
write. See also http://www.json.org/.

Peppercorn A package used by Deform for strutured form submission value deserialization.

pstruct Data deserialized by Peppercorn from one or more form controls to a representation suitable for consumption
by the deserialize method of a deform widget, usually while a form is being submitted.

renderer A callable with the signature (template_name, **kw) which is capable of rendering a template for
use in a deform widget.

renderer A function which accepts a logical template name and a set of keywords, and which returns the rendering
of a widget template.

Resource registry An attribute of a Deform form which maps widget requirement declarations made by widgets
to relative file paths. Useful to obtain all the CSS and/or Javascript resources required by all the widgets in a
concrete form rendering. See also The (High-Level) deform.Field.get_widget_resources() Method.

schema A nested collection of schema node objects representing an arrangement of data.

schema node A schema node can serialize an appstruct to a cstruct and deserialize a cstruct to an appstruct (object
derived from colander.SchemaNode or one of the colander Schema classes). Schemas are a concept used
by Deform, but actually implemented and offered by the Colander package.

Sequence A widget which allows you to add multiple subwidgets, each of the same type.

TinyMCE Editor TinyMCE is a platform independent web based Javascript HTML WYSIWYG editor control re-
leased as Open Source under LGPL by Moxiecode Systems AB. It has the ability to convert HTML TEXTAREA
fields or other HTML elements to editor instances. TinyMCE is very easy to integrate into other Content Man-
agement Systems.

validator A Colander validator callable. Accepts a node object and a value and either raises an
colander.Invalid exception or returns None. Used in deform as the validator= argument to a schema
node, ensuring that the input meets the requirements of the schema.

WebOb WebOb is a WSGI request/response library created by Ian Bicking.

widget Serializes a cstruct into a form rendering and deserializes a pstruct into a cstruct.

Widget requirement A sequence of tuples attached to a widget object representing the logical Javascript and/or CSS
requirements of the widget. See also Specifying Widget Requirements.

xhr xhr an XMLHTTPRequest. See also http://www.w3.org/TR/XMLHttpRequest/.

1.14 Next Release

1.14.1 Features

• deform.widget.RichTextWidget now accepts a dict/two-tuple options for specifying arbitrary op-
tions to pass to TinyMCE’s init function. All default options are now part of the class itself (where possible)
and can be customised by using options. [davidjb]

• deform.field.Field now renders a css_class on its fieldset, which is set on the schema. This works
in the same way as setting a schemas the title inside the fieldset.

1.14.2 Bug Fixes

• Trigger a change event when adding/removing sequence items.

34 Chapter 1. Topics

http://www.json.org/
http://docs.pylonsproject.org/projects/peppercorn/dev/
http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode
http://tinymce.moxiecode.com/index.php
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.moxiecode.com/
http://pythonpaste.org/webob/
http://www.w3.org/TR/XMLHttpRequest/

deform Documentation, Release 0.9.7

• Add optional label to checkbox widget.

• Make setup_requires depend once again on setuptools_git.

• Raise a ValueError exception when the prototype for a field in a sequence has no name. See
https://github.com/Pylons/deform/issues/149

1.15 0.9.7 (2013-03-06)

1.15.1 Bug Fixes

• Readonly checkbox template had a logic error.

1.15.2 Documentation

• Corrected the expected server response when using the Autocomplete widget.

1.16 0.9.6 (2013-01-10)

1.16.1 Bug Fixes

• Fixed remove bug in nested sequences. See https://github.com/Pylons/deform/pull/89

• Fixed bug wherein items added to a sequence nor the initial items rendered in a sequence would not reflect the
correct defaults of the item widget. See https://github.com/Pylons/deform/pull/79

• Fix bug where native datetime/date widget rendering competed with jQuery datetime/date widget rendering.
See https://github.com/Pylons/deform/pull/142

1.16.2 Dependencies

• Depend on and use zope.deprecation to deprecate Set class.

• Deform now depends on Colander >= 1.0a1 (previously it depended on >= 0.8). It requires Colander 1.0a1’s
newer cstruct_children and appstruct_children methods of schema objects as well as being able
to import objects from Colander that don’t exist in earlier versions.

• Deform now depends on Chameleon >= 2.5.1 (previously it depended on >= 1.2.3). It requires the Markup class
supplied by this version or better.

• Deform no longer has a setup_requires dependency on setuptools_git (useless, as the version on PyPI is broken).

• Setup.py now includes all testing requirements in tests_require that are in testing extras and vice versa.

1.16.3 Features

• Allow SelectWidget to produce <optgroup> HTML tags. See https://github.com/Pylons/deform/pull/87

• Allow deform.form.Form constructor to accept an autocomplete keyword argument, which controls
the autocomplete attribute of the form tag.

• Add Python 3.3 Trove classifier.

1.15. 0.9.7 (2013-03-06) 35

https://github.com/Pylons/deform/issues/149
https://github.com/Pylons/deform/pull/89
https://github.com/Pylons/deform/pull/79
https://github.com/Pylons/deform/pull/142
https://github.com/Pylons/deform/pull/87

deform Documentation, Release 0.9.7

• Pass through unknown keys in a filedict FileData serialization (FBO of passing out of band information).

• deform.Set type deprecated in favor of use of colander.Set.

• Give the preview_url method of the tempstore access to the stored item. [tomster]

• Add style attribute/arguments to textinput-related widgets allowing you to set the style of the tag by hand.

• Allow deform.widget.SequenceWidget constructor to accept an orderable keyword argument. De-
fault is False. If True, allow drag-and-drop reordering of SequenceWidget items (via jQuery UI Sortable).

• The default widget for the colander.Money type is now deform.widgets.MoneyInputWidget.

• Built-in widgets may have a ‘readonly’ attribute/constructor-argument, to indicate that a form field associated
with the widget should use its readonly template instead of its normal readwrite template. A readonly key-
word argument can still be passed to Field.serialize to render a field as readonly, like in older versions.

• deform.field.Field now has a __contains__ method, which returns True if the named field is a
subfield of the field on which it is called.

• deform.field.Field now has a validate_pstruct method which works like validate except it
accepts a pstruct directly instead of accepting a list of controls.

• deform.field.Field.validate now accepts a subcontrol argument for validating a submapping
of a form.

• In support of “retail” form rendering, the serialize method of widgets now accepts arbitrary keyword argu-
ments. These are used as top-level value overrides to widget templates.

• In support of “retail” form rendering, the serialize method of a Field now accepts arbitrary keyword argu-
ments. These are passed along to it’s widget’s serialize method.

• It is now possible to pass an appstruct argument to the deform.Field (and by extension, the
deform.Form) constructor. When you do so, you can omit passing an appstruct argument to the render
method of the field/form. Fields set a cstruct value recursively when supplied with an appstruct argument
to their constructor. This is in support of “retail” form rendering.

• Form/field objects are now initialized with a cstruct (recursively) when created. This means that accessing
form.cstruct will return the current set of rendering values. This value is reset during validation, so after a
validation is done you can re-render the form to show validation errors. This is in support of “retail” form
rendering.

• Form/field objects now have peppercorn-field-outputting methods: start_mapping, end_mapping,
start_sequence, end_sequence, start_rename, end_rename in support of retail form rendering.

• The deform.Field (and therefore deform.Form) classes now expose a render_template method,
which injects field and cstruct into the dictionary passed to the template if they don’t already exist in the
**kw passed. This is in support of retail form rendering.

• Add set_appstruct and set_pstruct methods to Field; these accept, respectively, an appstruct or a
pstruct and set the cstruct related to the field to the deserialized or serialized value.

1.16.4 Documentation

• Add a (weak) “Retail Form Rendering” chapter to the docs.

1.17 0.9.5 (2012-04-27)

• Add translations for TinyMCE. Thanks OCHIAI, Gouji.

36 Chapter 1. Topics

deform Documentation, Release 0.9.7

• Japanese translation thanks to OCHIAI, Gouji.

• Modified Russian translation thanks to aleksandr.rakov

• Date(Time)Widget supports now options to configure it, thx to gaston tjebbes, kiorky

• FileUploadWidget now sanitizes IE/Windows whole-path filenames before passing them back to the caller dur-
ing deserialization/validation.

• Add docs and dev setup.py aliases ala Pyramid.

• Add MoneyInputWidget widget type.

• Allow a custom i18n domain to be used for the “Add ${subitem_title}” link of a SequenceWidget. See
https://github.com/Pylons/deform/issues/85 .

• Allow the use of Integer values with SelectWidget. See https://github.com/Pylons/deform/issues/81 .

• CheckedInputWidget and CheckedPasswordWidget now populate the “confirm” element with the cstruct value
(for edit forms).

• Update to JQuery 1.7.2.

• Update to jquery.form 3.09.

1.18 0.9.4 (2012-02-14)

• No longer Python 2.5 compatible. Python 2.6+ is required.

• Python 3.2 compatible.

• Translate title attribute for remove button in sequence fields.

• Do not output empty error messages for sequence items. After translation these would insert the PO file meta-
data.

• Update to lingua for translations, add french translation

• fix multiple i18n issues.

• Fix a bug where displaying error could lead on an error when you have imbricated Mapping objects

• Fix issue #54: form.pt does not show validation errors from the top node of the schema. See
https://github.com/Pylons/deform/issues/54 for more information.

• Previously, all CheckedInputWidget and CheckedPasswordWidget fields had hardcoded input[name] attributes
of ‘value’ and ‘confirm’. When deserializing a form, this caused colander.null to be passed to the widget dese-
rialization function since neither submitted value matched the name of the field. This change simply replaces
‘value’ with the name of the field and ‘confirm’ with the name of the field with ‘-confirm’ appended.

• In select widget, add css_class to <select> rather than only <option>.

• Allow RichText fields to load their editor only after clicking on them

• There is no longer a deform_ajaxify global javascript function. Instead forms are AJAXified directly by
the javascript callback for the form.

1.19 0.9.3 (2011-08-10)

• Update Dutch translations.

• Translate title and description of items for sequence fields.

1.18. 0.9.4 (2012-02-14) 37

https://github.com/Pylons/deform/issues/85
https://github.com/Pylons/deform/issues/81
https://github.com/Pylons/deform/issues/54

deform Documentation, Release 0.9.7

• Add a new API method to field objects: translate. This method will use the translator passed to the under-
lying renderer to translate message ids into text.

1.20 0.9.2 (2011-07-22)

• Chameleon 2 compatibility.

• Use default widgets for a schema’s baseclass if known instead of always falling back to a text widget.

• Deform now includes a beautify.css (contributed by Ergo^) in its static directory, which can be used to
make form element styling prettier.

• Moved deformdemo into its own package and Github repository (https://github.com/Pylons/deformdemo).

1.21 0.9.1 (2011-06-23)

• Add Dutch translation.

• Add the deform.widget.DateTimeWidget widget, which uses the jQueryUI Timepicker add-on.

DateTimeWidget uses the ISO8601 combined date and time format internally, as expected by
colander.DateTime, but converts to the more friendly separate date and time format for display in the
widget.

This widget is now the default for colander.DateTime schema types.

• Upgrade to jquery-ui 1.8.11, as required by the timepicker.

• Compile all .po files to .mo in deform/locale and remove Texan locale (funny, but breaks python
setup.py compile_catalog with an UnknownLocale error.)

• Fix references to repoze.bfg and update obsoletes URLs in the demo application

• Remove unused jquery.autocomplete.min.js file from static directory.

• SelectWidget now has a size attribute to support single select widgets that are not dropdowns.

• The value fed to the deform.form.Button class as name would generate an invalid HTML id
if it contained spaces. Now it converts spaces to underscores if they exist in the name. See
https://github.com/Pylons/deform/pull/14 .

• Deformdemo application now has a Time field demonstration.

• Deform Chameleon templates now contain i18n:translate tags.

• German translation updated.

• Fixed invalid HTML generated for “select” widget.

• When using an ajax form without a redirect, a submit overwrites the form. In the case of a form validation
failure on first submit, no event handlers were registered to submit the form via ajax on the second submit. This
is now fixed. See https://github.com/Pylons/deform/pull/1 .

1.22 0.9 (2011-03-01)

• Moved to GitHub (https://github.com/Pylons/deform).

• Added tox.ini for testing purposes.

38 Chapter 1. Topics

https://github.com/Pylons/deformdemo
https://github.com/Pylons/deform/pull/14
https://github.com/Pylons/deform/pull/1
https://github.com/Pylons/deform

deform Documentation, Release 0.9.7

• Fix select dropdown behavior on Firefox by fixing CSS (closes http://bugs.repoze.org/issue152).

• Removed wufoo.css, minimized form.css. Changed templates around to deal with CSS changes.

• Sequence widgets now accept a min_len and a max_len argument, which influences its display of close and add
buttons.

• Convert demo application from repoze.bfg to Pyramid.

• Depend on Chameleon<1.999 (deform doesn’t yet work with Chameleon 2).

1.23 0.8.1 (2010-12-17)

1.23.1 Features

• Allow deform.form.Button class to be passed a disabled flag (false by default). If a Button is disabled,
its HTML disabled setting will be set true.

1.24 0.8 (2010-12-02)

1.24.1 Features

• Added Polish locale data: thanks to Marcin Lulek.

1.24.2 Bug Fixes

• Fix dynamic sequence item adding on Chrome and Firefox 4. Previously if there was a validation error rendering
a set of sequence items, the “add more” link would be rendered outside the form, which would cause it to not
work. Wrapping the sequence item element in a fixed this.

1.25 0.7 (2010-10-10)

1.25.1 Features

• Added Danish locale.

• Added Spanish locale: thanks to David Cerna for the translations!

• DatePartsWidget now renders error “Required” if all blank or “Incomplete” if partially blank for consis-
tency with the other widgets.

• Different styling involving and for checkbox choice, checked input, radio choice, checked password,
and dateparts widgets (via Ergo^). See http://bugs.repoze.org/issue165.

1.25.2 Dependencies

• Deform now depends on colander version 0.8 or better (the demo wants to use schema bindings).

• Deform now depends on Chameleon (uppercase) rather than chameleon to allow for non-PyPI servers.

1.23. 0.8.1 (2010-12-17) 39

http://bugs.repoze.org/issue152
http://bugs.repoze.org/issue165

deform Documentation, Release 0.9.7

1.25.3 Demo

• New addition to the demonstration application: schema binding.

1.26 0.6 (2010-09-03)

1.26.1 Features

• Sequence widgets are no longer structural by default; they now print the label of the sequence above the
sequence adder.

• Radio buttons in a radio button choice widget are now spaced closer together and the button is on the left hand
side.

• The sequence remove button is no longer an image.

• The sequence widget now puts the sequence adding link after any existing items in the sequence (previously the
link was always beneath the sequence title).

• It is now possible to associate a widget with a schema node within the schema directly. For example:

import colander
import deform.widget

class MySchema(Schema):
description = colander.SchemaNode(

colander.String(),
widget=deform.widget.RichTextWidget()
)

For more information, see “Changing the Default Widget Associated With a Field” in the documentation.

• The constructor of deform.Field objects (and thus deform.Form objects) now accept arbitrary keyword
arguments, each of which is attached to the field or form object being constructed, as well as being attached to
its descendant fields recursively.

• The form object’s template now respects the css_class argument / attribute of the form node.

• CheckboxChoice and RadioChoice widgets now use and to display individual choice elements (thanks
to Ergo^), and both widgets put the label after the element instead of before as previously.

• The deform.widget.AutocompleteInputWidget widget now uses JQuery UI’s autocomplete subli-
brary <http://docs.jquery.com/UI/Autocomplete> instead of the jquery.autocomplete library to perform
its job in order to reduce the number of libraries needed by Deform. Some options have been changed as a
result, and the set of resources returned by form.get_widget_resources has changed.

This change also implies that when a widget which uses a remote URL as a values input, the remote URL
must return a JSON structure instead of a \n-delimited list of values.

1.26.2 Requirements

• This Deform version requires colander version 0.7.3 or better.

40 Chapter 1. Topics

deform Documentation, Release 0.9.7

1.26.3 Bug Fixes

• RichTextWidget, AutocompleteInputWidget, TextInputWidget with input masks, and
CheckedInputWidget with input masks could not be used properly within sequences. Now they can be.
See also Internal and Backwards Incompatibilities within this release’s notes. This necessitated
new required deform.load() and deform.addCallback() JavaScript APIs.

• Radio choice widgets included within a submapping no longer put their selections on separate lines.

• Rich text widgets are now 500 pixels wide by default instead of 640.

• RadioChoiceWidgets did not work when they were used within sequences. Making them work required some
changes to the its template and it added a dependency on peppercorn >= 0.3.

• To make radio choice widgets work within sequences, the deform.addSequenceItem JavaScript method needed
to be changed. It will now change the value of name attributes which contain a marker that looks like an
field oid (e.g. deformField1), and, like the code which changes ids in the same manner, appends a random
component (e.g. deformField1-HL6sgP). This is to support radio button groupings.

• The mapping and sequence item templates now correctly display errors with msg values that are lists. Previ-
ously, a repr of a Python list was displayed when a widget had an error with a msg value that was a list; now
multiple <p> nodes are inserted into the rendering, each <p> node containing an individual error message. (Note
that this change requires colander 0.7.3).

1.26.4 Backwards Incompatibilities

• The JavaScript function deform.load() now must be called by the HTML page (usually in a script tag near
the end of the page, ala <script..>deform.load()</script>) which renders a Deform form in order
for widgets which use JavaScript to do proper event and behavior binding. If this function is not called, built-in
widgets which use JavaScript will no longer function properly.

• The JavaScript function deformFocusFirstInput was removed. This is now implied by
deform.load().

• The closebutton_url argument to the SequenceWidget no longer does anything. Style the widget template
via CSS to add an image.

1.26.5 Internal

• Provided better instructions for running the demo app and running the tests for the demo app in
deformdemo/README.txt.

• Try to prevent false test failures by injecting sleep statements in things that use browser.key_press.

• Moved deformdemo/tests/test_demo.py to deformdemo/test.py as well as mov-
ing deformdemo/tests/selenium.py to deformdemo/selenium.py. Removed the
deformdemo/tests subdirectory.

• The date input widget now uses JQueryUI’s datepicker functionality rather than relying on JQuery Tools’
date input. The latter was broken for sequences, and the former works fine.

• The various deform* JavaScript functions in deform.js have now been moved into a top-level namespace.
For example, where it was necessary to call deformFocusFirstInput() before, it is now necessary to
call deform.focusFirstInput().

• Make the TinyMCE rich text widget use mode: ’exact’ instead of mode: ’textareas’.

1.26. 0.6 (2010-09-03) 41

deform Documentation, Release 0.9.7

• richtext, autocomplete_input, textinput, checked_input, and dateinput, and form tem-
plates now use the new deform.addCallback indirection instead of each registering their own JQuery
callback or performing their own initialization logic, so that each may be used properly within sequences.

• Change sequence adding logic to be slightly simpler.

• The sample app form page now calls deform.load() rather than deformFocusFirstInput().

• Added new demo app views for showing a sequence of autocompletes, a sequence of dateinputs, a sequence of
richtext fields, a sequence of radio choice widgets and a sequence of text inputs with masks and tests for same.

1.26.6 Documentation

• Added a note about get_widget_resources to the “Basics” chapter.

• Added a note about deform.load() JavaScript requiredness to the “Basics” chapter.

• Add new top-level sections named Widget Templates and Widget JavaScript to the “Widgets”
chapter.

1.27 0.5 (2010-08-25)

1.27.1 Features

• Added features which make it possible to inquire about which resources (JavaScript and CSS resources) are
required by all the widgets that make up a form rendering. Also make it possible for a newly created widget to
specify its requirements. See “Widget Requirements and Resources” in the widgets chapter of the documenta-
tion.

• Add the get_widget_requirements method to deform.Field objects.

• Add the get_widget_resources method to deform.Field objects.

• Allow deform.Field (and deform.Form) objects to accept a “resource registry” as a constructor argu-
ment.

• Add the deform.Field.set_widgets method, which allows a (potentially nested) set of widgets to be
applied to children fields of the field upon which it is called.

• Add the deform.widget.TextInputCSV widget. This widget is exactly like the
deform.widget.TextAreaCSV widget except it accepts a single line of input only.

• The default widget for colander.Tuple schema types is now deform.widget.TextInputCSV.

• The deform.widget.FileUploadWidget now returns an instance of deform.widget.filedict
instead of a plain dictionary to make it possible (using isinstance) to tell the difference between file upload data
and a plain data dictionary for highly generalized persistence code.

1.28 0.4 (2010-08-22)

1.28.1 Bug Fixes

• When the hidden widget is used to deserialize a field, return colander.null rather than the empty string
so that it may be used to represent non-text fields such as colander.Integer. This is isomorphic to the
change done previously to deform.TextInputWidget to support nontextual empty fields.

42 Chapter 1. Topics

deform Documentation, Release 0.9.7

• Fix typo about overriding templates using set_zpt_renderer in templating chapter.

• Fix link to imperative schema within in Colander docs within “Basics”.

• Remove duplicate deform.widget.DateInputWidget class definition.

1.28.2 Features

• Add a deform.widget.RichTextWidget widget, which adds the TinyMCE WYSIWIG javascript editor
to a text area.

• Add a deform.widget.AutocompleteInputWidget widget, which adds a text input that can be sup-
plied a URL or iterable of choices to ease the search and selection of a finite set of choices.

• The deform.widget.Widget class now accepts an extra keyword argument in its constructor:
css_class.

• All widgets now inherit a css_class attribute from the base deform.widget.Widget class. If css_class‘
contains a value, the “primary” element in the rendered widget will get a CSS class attribute equal to the value
(“primary” is defined by the widget template’s implementor).

• The deform.Field class now as an __iter__ method which iterates over the children fields of the field
upon which it is called (for item in field == for item in field.children).

1.29 0.3 (2010-06-09)

1.29.1 Bug Fixes

• Change default form action to the empty string (rather than .). Thanks to Kiran.

1.29.2 Features

• Add deform.widget.DateInputWidget widget, which is a date picker widget. This has now become
the default widget for the colander.Date schema type, preferred to the date parts widget.

• Add text input mask capability to deform.widget.TextInputWidget.

• Add text input mask capability to deform.widget.CheckedInputWidget.

1.29.3 Backwards Incompatibilities

• Custom widgets must now check for colander.null rather than None as the null sentinel value.

• Dependency on a new (0.7) version of Colander, which has been changed to make using proper defaults possible;
if you’ve used the default argument to a colander.SchemaNode, or if you’ve defined a custom Colander
type, you’ll want to read the updated Colander documentation (particularly the changelist). Short story: use the
missing argument instead.

• If you’ve created a custom widget, you will need to tweak it slightly to handle the value colander.null
as input to both serialize and deserialize. See the Deform docs at http://docs.repoze.org/deform for
more information.

1.29. 0.3 (2010-06-09) 43

http://docs.repoze.org/colander
http://docs.repoze.org/deform

deform Documentation, Release 0.9.7

1.30 0.2 (2010-05-13)

• Every form has a formid now, defaulting to deform. The formid is used to compute the id of the form tag as
well as the button ids in the form. Previously, if a formid was not passed to the Form constructor, no id would
be given to the rendered form and the form’s buttons would not be prefixed with any formid.

• The deform.Form class now accepts two extra keyword arguments in its constructor: use_ajax and
ajax_options.

If use_ajax is True, the page is not reloaded when a submit button is pressed. Instead, the form is posted,
and the result replaces the DOM node on the page.

ajax_options is a string which allows you to pass extra options to the underlying AJAX form machinery
when use_ajax is True.

• Added a couple Ajax examples to the demo app.

• Add a rudimentary Ajax chapter to the docs.

1.31 0.1 (2010-05-09)

• Initial release.

44 Chapter 1. Topics

CHAPTER

TWO

DEMONSTRATION SITE

Visit deformdemo.repoze.org to view an application which demonstrates most of Deform’s features. The source code
for this application is also available in the deform package on GitHub.

45

http://deformdemo.repoze.org
https://github.com/Pylons/deform

deform Documentation, Release 0.9.7

46 Chapter 2. Demonstration Site

CHAPTER

THREE

SUPPORT AND DEVELOPMENT

To report bugs, use the bug tracker.

If you’ve got questions that aren’t answered by this documentation, contact the Pylons-discuss maillist or join the

#pylons IRC channel irc://irc.freenode.net/#pylons.

Browse and check out tagged and trunk versions of deform via the deform package on GitHub. To check out the
trunk, use this command:

git clone git://github.com/Pylons/deform.git

To find out how to become a contributor to deform, please see the Pylons Project contributor documentation.

47

https://github.com/Pylons/deform/issues
http://groups.google.com/group/pylons-discuss
https://github.com/Pylons/deform
http://docs.pylonsproject.org/#contributing/

deform Documentation, Release 0.9.7

48 Chapter 3. Support and Development

CHAPTER

FOUR

INDEX AND GLOSSARY

• genindex

• modindex

• search

49

deform Documentation, Release 0.9.7

50 Chapter 4. Index and Glossary

CHAPTER

FIVE

THANKS

Without these people, this software would not exist:

• The Formish guys (http://ish.io)

• Tres Seaver

• Fear Factory (http://fearfactory.com)

• Midlake (http://midlake.net)

51

http://ish.io
http://fearfactory.com
http://midlake.net

